A Summary of the Varroa-Virus Disease Complex in Honey Bees

by PETER G. KEVAN¹, M. A. HANNAN¹, N. OSTIGUY² and ERNESTO GUZMAN-NOVOA¹

arroa destructor destroys colonies of European races of the Western honey bee (Apis mellifera) in two ways through ectoparasitic feeding on the mature and immature bees and by transmitting the viruses among bees. Researchers have shown that these mites transmit a number of viro-pathogens (Tables 1 and 2), but there has been no compendium of those pathogens to indicate to the beekeeping industry the breadth and extent of the problem. Anderson (1995) provides a useful review of the viruses associated with A. mellifera and the Asiatic Hive Bee, A. cerana. He also notes the relationship of the viruses with other pathogens and parasites. We have summarized that information in Table 1. In this short article, we review briefly the diversity of virus pathogens of honey bees that have been associated with V. destructor. Other virus transmitters, like Nosema apis and Malpighamoeba mellificae that cause dysentery in honey bees, are known but the viruses they can transmit seem to cause little harm to the honey bees.

So far, about 20 viruses infecting honey bees have been identified (Ostiguy 2004). Some of the more serious pathogens are sacbrood virus, deformed winged virus (DWV), and chronic and acute paralysis virus (CBPV and ABPV). Some of the other viruses are mild or negligible in their effects. Table 1 presents a list of virus diseases, and Table 2 notes the evidence of their association with V. destructor and modes of transmission. The mites transmit viruses to their hosts through their saliva when feeding. The feeding habits of the mites, apparently sharing and repeatedly using the same wounds (Kanbar and Engels 2005), would increase the levels and chances of infection. Moreover, it is also reported that the saliva of mites may contain substances that interfere with the bee's immune system (Table 2). Viruses also can be transmitted from bee to bee in several ways, e.g., through eggs, larvae, pupae, and adults; food, feeding, and feces (Table 2). It is also reported that viruses occurs in honey (Table 2).

- ¹ Department of Environmental Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1,
- ² Department of Entomology, The Pennsylvania State University, 501 ASI Building, University Park, PA 16802, USA

No, this is NOT a staged picture! Last October some colonies were dying and being robbed. On close inspection they were having very severe cases of PMS (parasitic mite syndrome). Very few brood cells were left and when I opened these cells, some had more than 20 mites per cell! This one had 12 mites just near the top. Most of the time the larvae were already dead inside cells (this one looks alive). (Photo by Dr. Zachary Huang, Michigan State University, www.beetography.com)

Conclusion

Colonies of honey bees are in increased demand for pollination services, as well as for honey and other bee products. In many countries apiculture is a profitable business with thousands of people involved. However, diseases of bees and hives have caused serious problems, even contributing to a decline in beekeeping. The spread of mite parasites throughout North America has created many difficulties for beekeepers. Moreover, the problems have become exacerbated by the evolution of pesticide resistance in the mites. Now, the added complexity of multiple infections, such as by Varroa and viruses, must be addressed as colonies affected must surely be weakened more than by either pathogen alone. This short summary, with its table of information, is intended to provide insights into the potential extent of the problem, and the amount of research that is being undertaken to address the situation.

References

- Allen, M.F., Ball, B.V., White, R.F. and J.F. Antoniw. 1986. The detection of acute paralysis virus in *Varroa jacobsoni* by the use of a simple indirect ELISA. *Journal of Apicultural Research* 25: 100-105.
- Anderson, D.L. 1990. Pests and pathogens of the honeybee *Apis mellifera* L. in Fiji, South Pacific Ocean. *Journal of Apicultural Research* 29: 53-59.
- Anderson, D.L. 1995. Viruses of Apis cerana and Apis mellifera. In: P. G. Kevan (ed.).The Asiatic Bee Hive: Apiculture, Biology, and Role in Sustainable Development in Tropical and Subtropical Asia. Enviroquest, Ltd., Cambridge, ON, Canada. Pp. 161-170.
- Bakonyi, T., Farkas, R., Szendroi, A., Dobos-Kovacs, M., and M. Rusvai. 2002. Detection of acute bee paralysis virus by RT-PCR in honey bee and Varroa destructor field samples: Rapid

American Bee Journal

Table 1. Virus infections of honey bees (*Apis mellifera* unless otherwise noted). Those listed in Bold are recorded as having been transmitted by *Varroa destructor*.

8 ·			
VIRUS	Symptoms	REFERENCE	
ABPV = Acute Bee Paralysis Virus	Kills larvae, pupae, and adults only in	Anderson 1995;	
	association with Varroa, otherwise	Bailey et al. 1979	
	bees seem healthy.	-	
BQCV = Black Queen Cell Virus	Affects queen prepupae and pupae	Anderson 1995	
	sealed in cells. They become pale,		
	then darken, staining the cell. Mostly		
	in association with Nosema apis.		
BXV = Bee Virus X	Reduces life span of adult bees Bailey 1		
BYV= Bee Virus Y	Associated with Nosema apis	Anderson 1995	
CBPV = Chronic Bee Paralysis Virus	Infected bees become listless	Anderson 1995	
	crawlers with trembling to dislocated		
	wings, and are often hairless and		
	greasy in appearance.		
CWV = Cloudy Wing Virus	Wings sometimes somewhat opaque	Hornitzky 1987	
DWV = Deformed Wing Virus	Deformed wings and short survival	Yang & Cox-Foster	
	time (<48 hrs) when infection is high.	2005	
KBV = Kashmir Bee Virus	Apparently more or less harmless	Anderson 1995	
	unless associated with other		
	pathogens such as Nosema apis and		
	<i>Melissococcus pluton</i> . Infects both <i>A</i> .		
	cerana and A. mellifera.		
KV = Kakugo Virus	Aggression (virus is found in the	Fujiyuki et al. 2004	
	brain).		
SBV = Sac Brood Virus	Sac brood.		
SBPV = Slow Bee Paralysis Virus	Kills bees after about 12 days,	Anderson 1995	
	Paralysis of fore legs.		
TSBV = Thai Sac Brood Virus	Sac brood of <i>A. cerana</i> .		
Arkansas Bee Virus	Suggested to kill bees slowly. Often		
	masked by infection by CBPV.		
S-shaped Virus	Reduced longevity by 1/3, especially		
	in winter.		
Satellite Virus or Chronic Bee Paralysis	With CBPV.	Bailey 1975, 1981	
Associate Virus			
Iridescent Virus/Iridescent Dea Virus	Apis cerana color changes in internal	Bailey 1975,	
	organs. Infected colonies may die.	Anderson 1995	
Rickettsial bodies including F Virus (folded	Sluggishness and inability to fly,	Clark 1977, Anderson	
filamentous) or Filamentous Virus	milky haemolymph sometimes.	1995	

It is important to realize that "symptoms" are only indicative that a certain pathogen may be present. Only through "diagnosis" can infection be confirmed.

screening of representative Hungarian apiaries. *Apidologie* 33: 63-74.

- Bailey, L. 1975. Recent research on honeybee viruses. *Bee World* 56: 55-64.
- Bailey, L. 1981. Honey Bee Pathology. Academic Press, New York & London. 124 pp.
- Bailey, L. 1982. Viruses of honeybees. *Bee World* 63: 165-173.
- Bailey, L., Carpenter, J.M., and R.D. Woods. 1979. Egypt bee virus and Australian isolates of Kashmir bee virus. *Journal of General Virology* 43: 641-647.
- Ball, B.V. 1985. Acute paralysis virus isolates from honeybee, *Apis mellifera*,

colonies infested with *Varroa jacobsoni*. *Journal of Apicultural Research* 24: 115-119.

- Ball, B.V. and M. F. Allen. 1988. The prevalence of pathogens in honey bee (*Apis mellifera*) colonies infested with the parasitic mite *Varroa jacobsoni*. *Journal of Insect Pathology* 113: 237-244.
- **Batuev, Y. M. 1979.** New information about virus paralysis. *Pchelovodstvo* 7: 10 11 (in Russian).
- Bekesi, L., Ball, B. V., Dobos-Kovacs, M., T. Bakonyi, and M. Rusvai. 1999. Acute paralysis virus of honey bee (*Apis mellifera*) in a Hungarian apiary infest-

ed with *Varroa jacobsoni* mite. *Allatorvosok Lapja* 121: 601-603.

- Bekesi, L., Ball, B. V., Dobos-Kovacs, M., T. Bakonyi, and M. Rusvai. 1999. Occurrence of acute paralysis virus of honey bee (*Apis mellifera*) in a Hungarian apiary infested with the parasitic mite Varroa jacobsoni. Acta Veterinaria Hungarica 47: 319-324.
- **Boecking, O. 1999.** Sealing up and nonremoval of diseased and *Varroa jacobsoni* infested drone brood cells is part of the hygienic behaviour in *Apis cerana. Journal of Apicultural Research* 38: 159-168.

Bowen-Walker, P.L., Martin, S.J. and A.

Table 2. The pathogens (viruses) and the transmitters (*Varroa* mite, *V. destructor*) found in European races of the Western honey bee (*Apis mellifera*) (*Am*) and the Asiatic Hive Bee (*Apis cerana*) (*Ac*) to cause diseases. The viruses are ABPV = Acute Bee Paralysis Virus; BQCV = Black Queen Cell Virus; BXV = Bee Virus X; BYV= Bee Virus Y; CBPV = Chronic Bee Paralysis Virus; CWV = Cloudy Wing Virus; DWV = Deformed Wing Virus; KBV = Kashmir Bee Virus; KV = Kakugo Virus; SBV = Sac Brood Virus; SBPV = Slow Bee Paralysis Virus; TSBV = Thai Sac Brood Virus. The interaction with *Varroa* is noted as positive by experimentation (+) or by implication (+ Imp). The mode or modes of transmission, and potential complications, are noted with V.

Host	Viruses	Interaction	Transmission	References
Am(USA)	ABPV, BQCV, CBPV, DWV, KBV, SBV	+	Vertical transmission	Chen et al. 2006
Am (Germany)	DWV	+	V+ Food	Yue & Genersch 2005
Am (USA)	KBV, DWV	+	V+ Immuno compromised	Shen et al. 2005a
Am (USA)	KBV, SBV	+	V+ transovarian, Food, Saliva	Shen et al. 2005b
Am (USA)	KBV, SBV	+	V+ Transovarian, Food, Saliva	Siede et al. 2005
Am (USA)	DWV	+	V+Immuno compromised	Yang & Cox-Foster 2005
Am (USA)	DWV	+ Imp		Chen et al. 2005
Am (France)	DWV, SBV,CBPV, ABPV,BQCV,KBV	+ Imp		Tentcheva et al. 2004
Am (Japan)	DWV,KV	+ Imp		Ongus et al. 2004
Am (USA)	KBV	+		Chen et al. 2004
Am (Sweden/UK)	General	+ Imp		Sumpter & Martin 2004
Am (USA)	DWV, SBV, KBV	+	V+ transovarian, Food	Shen 2003
Am (?)	DWV	+		Nordstrom 2003
Am (USA)	KBV		Fecal	Hung 2000
Am (Hungary)	ABPV	+ Imp		Bakonyi et al. 2002
Am (UK)	DWV	+		Martin 2001
Am (USA)	ABPV + KBV	no	Mites not invoked	Evans 2001
Am (Poland)	SBV	+	V	Jedruszuk 2000
In vitro	ABPV	+	V+ Food	Brodsgaard et al. 2000
Ac (Philippines & Nepal)	TSBV	+ Imp	V+ Infested drone brood cells	Boecking 1999
Am (Scandinavia)	CWV,DWV,ABPV,BQCV	+ Imp	V	Nordstrom et al. 1999
Am (Hungary)	APV	+	V	Bekesi et al. 1999
Am (USA)	DWV	+ Imp	V	Hung & Shimanuki 1999
Am (Hungary)	ABPV	+ Imp	V	Bekesi et al. 1999
Am (UK)	DWV	+	V	Bowen-Walker et al. 1999
Am (Poland)	FV,BQCV,BYV,ABPV,C BPV,SBV	+	V+ Nosema apis	Topolska et al. 1995
Am (France)	ABPV,CBPV,SBV	+	V+ Foraging bee	Faucon et al. 1992
Am (Fiji)	CBPV,SBV,BQCV,BXV, BYV,KBV, SBPV, DWV	+	Nosema apis, Malpighamoeba mellificae	Anderson 1990
Am (Yugoslavia)	ABPV,CWV,BQCV	+	V+Nosema apis	Kulincevic et al. 1990
<i>Am</i> (Netherlands, Germany, UK)	ABPV	+	V+Larval food	Ball & Allen 1988
Am (Europe)	ABPV	+	V	Bailey et al. 1979; Batuev 1979; Bailey, 1982 ; Ritter et al. 1984; Ball 1985; Ball & Allen 1988; Allen et al. 1986

Gunn. 1999. The transmission of deformed wing virus between honeybees (Apis mellifera L.) by the ectoparasitic mite Varroa jacobsoni Oud. Journal of Invertebrate Pathology 73: 101-106.

- Brodsgaard, C. J., Ritter, W., Hansen, H. and H. F. Brodsgaard. 2000. Interactions among Varroa jacobsoni mites, acute paralysis virus, and Paenibacillus larvae and their influence on mortality of larval honeybees in vitro. Apidologie 31: 543-554.
- Chen, Y. P., Higgins, J. A. and M. F. Feldlaufer. 2005. Quantitative real-time reverse transcription-PCR analysis of deformed wing virus infection in the honey bee (Apis mellifera L.). Applied and Environmental Microbiology 71: 436-441.
- Chen, Y. P., Pettis, J. S., Collins, A., and M. F. Feldlaufer. 2006. Prevalence and transmission of honeybee viruses. Applied and Environmental Microbiology 72: 606 - 611.
- Chen, Y. P., Pettis, J. S., Evans, J. D., Kramer, M., and M. F. Feldlaufer. 2004. Transmission of Kashmir bee virus by the ectoparasitic mite Varroa destructor. Apidologie 35: 441-448.
- Clarke, T. B. 1977. Another virus in honey bees. American Bee Journal 117: 340 - 341.
- Evans, J. D. 2001. Genetic evidence for coinfection of honey bees by acute bee paralysis and Kashmir bee viruses. Journal of Invertebrate Pathology 78: 189 - 193.
- Faucon, J.P., Vitu, C., Russo, P. and M. Vignoni. 1992. Diagnosis of acute paralysis - application to epidemic honeybee diseases in France during 1990. Apidologie 23: 139-146.
- Hornitzky, M. A. Z. 1981 or 1987
- Hung, A. C. F. 2000. PCR detection of Kashmir bee virus in honey bee excreta. Journal of Apicultural Research. 39: 103-106.
- Hung, A.C.F. and H. Shimanuki. 1999. A scientific note on the detection of Kashmir bee virus in individual honey-

bees and Varroa jacobsoni mites. Apidologie 30: 353-354.

- Jedruszuk, A. 2000. The influence of V. jacobsoni infestation on occurrence and course of sacbrood disease. Medycyna Weterynaryjna 56: 667-671.
- Kanbar, G. and W. Engels. 2005. Communal use of integumental wounds in honey bee (Apis mellifera) pupae multiply infested by the ectoparasitic mite Varroa destructor. Genetics and Molecular Research 4: 465-472.
- Kulincevic, J., Ball, B. and V. Mladian. 1990. Viruses in honey-bee colonies infested with Varroa jacobsoni 1st findings in Yugoslavia. Acta Veterinaria (Belgrade) 40: 37-42.
- Martin, S.J. 2001. The role of Varroa and viral pathogens in the collapse of honeybee colonies: A modelling approach. Journal of Applied Ecology 38: 1082-1093.
- Nordstrom, S. 2003. Distribution of deformed wing virus within honey bee (Apis mellifera) brood cells infested with the ectoparasitic mite Varroa destructor. Experimental and Applied Acarology 29:293-302.
- Nordstrom, S., Fries, I., Aarhus, A., Hansen, H. and S. Korpela. 1999. Virus infections in Nordic honey bee colonies with no, low or severe Varroa jacobsoni infestations. Apidologie 30: 475-484.
- Ongus, J. R., Peters, D., Bonmatin, J-M., Bengsch, E., Vlak, J. M. and van Oers, M. M. 2004. Complete sequence of a picorna-like virus of the genus Iflavirus replicating in the mite Varroa destructor. Journal of General Virology 85: 3747-3755.
- Ostiguy, N. 2004. Honey bee viruses: Transmission routes and interactions with Varroa mites. 11° Congreso Internacional De Actualizacion Apicola, 9 al 11De Junio De 2004. Memorias. 47p.
- Ritter, W., Leclercq, E. and W. Koch. 1984. Observations on bee and Varroa mite populations in infested honeybee colonies. Apidologie 15: 389-400.
- Shen, M., Yang, X., Cox-Foster, D. and

L. Cui. 2005a. The role of Varroa mites in infections of Kashmir bee virus (KBV) and deformed wing virus (DWV) in honey bees. Virology 342: 141-149.

- Shen, M., Cui, L., Ostiguy, N., and D. Cox-Foster. 2005b. Intricate transmission routes and interactions between picorna-like viruses (Kashmir bee virus and sacbrood virus) with the honev bee host and the parasitic Varroa mite. Journal of General Virology 86: 2281-22.89
- Shen. M. 2003. The relationship of honev bees, varroa mites, and viruses. Thesis (Ph.D.), The Pennsylvania State University, University Park, PA.
- Siede, R., Derakhshifar, I., Otten, C., Berenyi, O., Bakonyi, T., Koeglberger, H., and R. Buechler. 2005. Prevalence of Kashmir bee virus in central Europe. Journal of Apicultural Research 44: 129.
- Sumpter, D. J. T. and S. J. Martin. 2004. The dynamics of virus epidemics in Varroa-infested honey bee colonies. Journal of Animal Ecology 73: 51-63.
- Tentcheva, D., Gauthier, L., Zappulla, N., Dainat, B., Cousserans, F., Colin, M. E. and M. Bergoin. 2004. Prevalence and seasonal variations of six bee viruses in Apis mellifera L. and Varroa destructor mite populations in France. Applied and Environmental Microbiology 70: 7185-7191.
- Topolska, G., Ball, B. and M. Allen. 1995. Identification of viruses in bees from two Warsaw apiaries. Medycyna Weterynaryjna 51: 145-147.
- Yang, X., and D. L. Cox-Foster. 2005. Impact of an ectoparasite on the immunity and pathology of an invertebrate: Evidence for host immunosuppression and viral amplification. Proceedings of the National Academy of Sciences of the United States of America 102: 7470-7475.
- Yue, C. and E. Genersch. 2005. RT-PCR analysis of Deformed wing virus in honeybees (Apis mellifera) and mites (Varroa destructor). Journal of General Virology 86: 3419-3424.

wide. Guaranteed by manufacturer for 1 year with all warranties handled by manufacturer 1-888-922-1293

Knives

www.dadant.com