<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:st1="urn:schemas-microsoft-com:office:smarttags" xmlns="http://www.w3.org/TR/REC-html40">

<head>
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=us-ascii">
<meta name=Generator content="Microsoft Word 11 (filtered medium)">
<o:SmartTagType namespaceuri="urn:schemas-microsoft-com:office:smarttags"
 name="PlaceType"/>
<o:SmartTagType namespaceuri="urn:schemas-microsoft-com:office:smarttags"
 name="PlaceName"/>
<o:SmartTagType namespaceuri="urn:schemas-microsoft-com:office:smarttags"
 name="PostalCode"/>
<o:SmartTagType namespaceuri="urn:schemas-microsoft-com:office:smarttags"
 name="State"/>
<o:SmartTagType namespaceuri="urn:schemas-microsoft-com:office:smarttags"
 name="City"/>
<o:SmartTagType namespaceuri="urn:schemas-microsoft-com:office:smarttags"
 name="place"/>
<o:SmartTagType namespaceuri="urn:schemas-microsoft-com:office:smarttags"
 name="Street"/>
<o:SmartTagType namespaceuri="urn:schemas-microsoft-com:office:smarttags"
 name="address"/>
<!--[if !mso]>
<style>
st1\:*{behavior:url(#default#ieooui) }
</style>
<![endif]-->
<style>
<!--
 /* Style Definitions */
 p.MsoNormal, li.MsoNormal, div.MsoNormal
        {margin:0in;
        margin-bottom:.0001pt;
        font-size:12.0pt;
        font-family:Arial;}
a:link, span.MsoHyperlink
        {color:blue;
        text-decoration:underline;}
a:visited, span.MsoHyperlinkFollowed
        {color:purple;
        text-decoration:underline;}
p.MsoAutoSig, li.MsoAutoSig, div.MsoAutoSig
        {margin:0in;
        margin-bottom:.0001pt;
        font-size:12.0pt;
        font-family:"Times New Roman";}
span.EmailStyle17
        {mso-style-type:personal-compose;
        font-family:Arial;
        color:windowtext;}
@page Section1
        {size:8.5in 11.0in;
        margin:1.0in 1.25in 1.0in 1.25in;}
div.Section1
        {page:Section1;}
-->
</style>

</head>

<body lang=EN-US link=blue vlink=purple>

<div class=Section1>

<p class=MsoNormal><font size=2 face=Arial><span style='font-size:10.0pt'><o:p>&nbsp;</o:p></span></font></p>

<p class=MsoNormal><font size=2 face=Arial><span style='font-size:10.0pt'><o:p>&nbsp;</o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;font-family:"Times New Roman"'>Honeybees are found to interact with
Quantum fields<o:p></o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;font-family:"Times New Roman"'>@ Physics &nbsp; &nbsp; May 15 2005,
03:27 (UTC+0)<o:p></o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;font-family:"Times New Roman"'><o:p>&nbsp;</o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;font-family:"Times New Roman"'>Honeybees like these may have means to
interact with the Quantum world<o:p></o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;font-family:"Times New Roman"'>By Adam Frank<o:p></o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;font-family:"Times New Roman"'>COPYRIGHT (C) 1997 Discover<o:p></o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;font-family:"Times New Roman"'>COPYRIGHT (C) 2004 Gale Group<o:p></o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;font-family:"Times New Roman"'><o:p>&nbsp;</o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;font-family:"Times New Roman"'>How could bees of little brain come up
with anything as complex as a dance language? The answer could lie not in
biology but in six-dimensional math and the bizarre world of quantum mechanics.<o:p></o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;font-family:"Times New Roman"'><o:p>&nbsp;</o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;font-family:"Times New Roman"'>Honeybees don't have much in the way of
brains. Their inch-long bodies hold at most a few million neurons. Yet with
such meager mental machinery honeybees sustain one of the most intricate and
explicit languages in the animal kingdom. In the darkness of the hive, bees
manage to communicate the precise direction and distance of a newfound food
source, and they do it all in the choreography of a dance. Scientists have
known of the bee's dance language for more than 70 years, and they have
assembled a remarkably complete dictionary of its terms, but one fundamental
question has stubbornly remained unanswered: How do they do it? How do these
simple animals encode so much detailed information in such a varied language?
Honeybees may not have much brain, by they do have a secret.<o:p></o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;font-family:"Times New Roman"'><o:p>&nbsp;</o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;font-family:"Times New Roman"'>This secret has vexed Barbara Shipman, a
mathematician at the <st1:place w:st="on"><st1:PlaceType w:st="on">University</st1:PlaceType>
 of <st1:PlaceName w:st="on">Rochester</st1:PlaceName></st1:place>, ever since
she was a child. &quot;I grew up thinking about bees,&quot; she says. &quot;My
dad worked for the Department of Agriculture as a bee researcher. My brothers
and I would stop at his office, and sometimes he would how show us the bees. I
remember my father telling me about the honeybee's dance when I was about nine
years old. And in high school I wrote a paper on the medicinal benefits of
honey.&quot; Her father kept his books on honeybees on a shelf in her room.
&quot;I'm not sure why,&quot; she says. &quot;It may have just been a
convenient space. I remember looking at a lot of these books, especially the
one by Karl von Frisch.&quot;<o:p></o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;font-family:"Times New Roman"'><o:p>&nbsp;</o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;font-family:"Times New Roman"'>Von Frisch's Dance Language and
Orientation of Bees was some four decades in the making. By the time his papers
on the bee dance were collected and published in 1965, there was scarcely an
entomologist in the world who hadn't been both intrigued and frustrated by his
findings. Intrigued because the phenomenon Von Frisch described was so
startlingly complex; frustrated because no one had a clue as to how bees
managed the trick. Von Frisch had watched bees dancing on the vertical face of
the honeycomb, analyzed the choreographic syntax, and articulated a vocabulary.
When a bee finds a source of food, he realized, it returns to the hive and
communicates the distance and direction of the food to the other worker bees,
called recruits. On the honeycomb which Von Frisch referred to as the dance
floor, the bee performs a &quot;waggle dance,&quot; which in outline looks
something like a coffee bean--two rounded arcs bisected by a central line. The
bee starts by making a short straight run, waggling side to side and buzzing as
it goes. Then it turns left (or right) and walks in a semicircle back to the
starting point. The bee then repeats the short run down the middle, makes a
semicircle to the opposite side, and returns once again to the starting point.<o:p></o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;font-family:"Times New Roman"'><o:p>&nbsp;</o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;font-family:"Times New Roman"'>It is easy to see why this beautiful and
mysterious phenomenon captured Shipman's young and mathematically inclined
imagination. The bee's finely tuned choreography is a virtuoso performance of
biologic information processing. The central &quot;waggling&quot; part of the
dance is the most important. To convey the direction of a food source, the bee
varies the angle the waggling run makes with an imaginary line running straight
up and down. One of Von Frisch's most amazing discoveries involves this angle.
If you draw a line connecting the beehive and the food source, and another line
connecting the hive and the spot on the horizon just beneath the sun, the angle
formed by the two lines is the same as the angle of the waggling run to the
imaginary vertical line. The bees, it appears, are able to triangulate as well
as a civil engineer.<o:p></o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;font-family:"Times New Roman"'><o:p>&nbsp;</o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;font-family:"Times New Roman"'>Direction alone is not enough, of
course--the bees must also tell their hive mates how far to go to get to the
food. &quot;The shape or geometry of the dance changes as the distance to the
food source changes,&quot; Shipman explains. Move a pollen source closer to the
hive and the coffee-bean shape of the waggle dance splits down the middle.
&quot;The dancer will perform two alternating waggling runs symmetric about,
but diverging from, the center line. The closer the food source is to the hive,
the greater the divergence between the two waggling runs.&quot;<o:p></o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;font-family:"Times New Roman"'><o:p>&nbsp;</o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;font-family:"Times New Roman"'>If that sounds almost straightforward,
what happens next certainly doesn't. Move the food source closer than some
critical distance and the dance changes dramatically: the bee stops doing the
waggle dance and switches into the &quot;round dance.&quot; It runs in a small
circle, reversing and going in the opposite direction after one or two turns or
sometimes after only half a turn. There are a number of variations between
species.<o:p></o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;font-family:"Times New Roman"'><o:p>&nbsp;</o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;font-family:"Times New Roman"'>Von Frisch's work on the bee dance is
impressive, but it is largely descriptive. He never explained why the bees use
this peculiar vocabulary and not some other. Nor did he (or could he) explain
how small-brained bees manage to encode so much information. &quot;The dance of
the honeybee is special among animal communication systems,&quot; says Shipman.
&quot;It conveys concise, quantitative information in an abstract, symbolic
way. You have to wonder what makes the dance happen. Bees don't have enough
intelligence to know what they are doing. How do they know the dance in the
first place? Calling it instinct or some other word just substitutes one mystery
for another.&quot;<o:p></o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;font-family:"Times New Roman"'><o:p>&nbsp;</o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;font-family:"Times New Roman"'>Shipman entered college as a biochemistry
major and even spent some time working in a biology lab studying the
hemolymph--the &quot;blood&quot;--of honeybee larvae, but she quickly moved her
interest in bees to the side. &quot;During my freshman year,&quot; she says, aI
became more attracted to the beauty and rigor of mathematics.&quot; She
switched her major and eventually went on to graduate school and to a
professorship at the <st1:place w:st="on"><st1:PlaceType w:st="on">University</st1:PlaceType>
 of <st1:PlaceName w:st="on">Rochester</st1:PlaceName></st1:place>. For several
years it seemed as though she had wandered a long way from her childhood
fascination.<o:p></o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;font-family:"Times New Roman"'><o:p>&nbsp;</o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;font-family:"Times New Roman"'>Then, taking an unlikely route, she found
herself once again confronting the mysteries of bees head-on. While working on
her doctoral thesis, on an obscure type of mathematics known only to a small
coterie of researchers well-versed in the minutiae of geometry, she stumbled
across what just might be the key to the secrets of the bee's dance.<o:p></o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;font-family:"Times New Roman"'><o:p>&nbsp;</o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;font-family:"Times New Roman"'>Shipman's work concerned a set of
geometric problems associated with an esoteric mathematical concept known as a
flag manifold. In the jargon of mathematics, manifold means &quot;space.&quot;
But don't let that deceptively simple definition lull you into a false sense of
security. Mathematicians have as many kinds of manifolds as a French baker has
bread. Some manifolds are flat, some are curved, some are twisted, some wrap
back on themselves, some go on forever. &quot;The surface of a sphere is a
manifold,&quot; says Shipman. &quot;So is the surface of a bagel--it's called a
torus.&quot; The shape of a manifold determines what kinds of objects (curves,
figures, surfaces) can &quot;live&quot; within its confines. Two different
types of loops, for example, live in the surface of a torus--one wraps around
the outside, the other goes through the middle, and there is no way to
transform the first into the second without breaking the loop. In contrast,
there is only one type of loop that lives on a sphere.<o:p></o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;font-family:"Times New Roman"'><o:p>&nbsp;</o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;font-family:"Times New Roman"'>Mathematicians like to examine different
manifolds the way antiques dealers browse through curio shops--always
exploring, always looking for unusual characteristics that expand their
understanding of numbers or geometry. The difficult part about exploring a
manifold, however, is that mathematicians don't always confine them to the
three dimensions of ordinary experience. A manifold can have two dimensions
like the surface of a screen, three dimensions like the inside of an empty box,
four dimensions like the space-time of our Einsteinian universe, or even ten or
a hundred dimensions. The flag manifold (which got its name because some
imaginative mathematician thought it had a &quot;shape&quot; like a flag on a
pole) happens to have six dimensions, which means mathematicians can't
visualize all the two-dimensional objects that can live there. That does not
mean, though, that they cannot see the objects' shadows.<o:p></o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;font-family:"Times New Roman"'><o:p>&nbsp;</o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;font-family:"Times New Roman"'>One of the more effective tricks for
visualizing objects with more than three dimensions is to &quot;project&quot;
or &quot;map&quot; them onto a space that has fewer dimensions (usually two or
three). A topographic map, in which three-dimensional mountains get squashed
onto a two-dimensional page, is a type of projection. Likewise, the shadow of
your hand on the wall is a two-dimensional projection of your three-dimensional
hand.<o:p></o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;font-family:"Times New Roman"'><o:p>&nbsp;</o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;font-family:"Times New Roman"'>One day Shipman was busy projecting the
six-dimensional residents of the flag manifold onto two dimensions. The
particular technique she was using involved first making a two-dimensional
outline of the six dimensions of the flag manifold. This is not as strange as
it may sound. When you draw a circle, you are in effect making a
two-dimensional outline of a three-dimensional sphere. As it turns out, if you
make a two-dimensional outline of the six-dimensional flag manifold, you wind
up with a hexagon. The bee's honeycomb, of course, is also made up of hexagons,
but that is purely coincidental. However, Shipman soon discovered a more
explicit connection. She found a group of objects in the flag manifold that,
when projected onto a two-dimensional hexagon, formed curves that reminded her
of the bee's recruitment dance. The more she explored the flag manifold, the
more curves she found that precisely matched the ones in the recruitment dance.
&quot;I wasn't looking for a connection between bees and the flag
manifold,&quot; she says. &quot;I was just doing my research. The curves were
nothing special in themselves, except that the dance patterns kept
emerging.&quot; Delving more deeply into the flag manifold, Shipman dredged up
a variable, which she called alpha, that allowed her to reproduce the entire
bee dance in all its parts and variations. Alpha determines the shape of the
curves in the 6-D flag manifold, which means it also controls how those curves
look when they are projected onto the 2-D hexagon. Infinitely large values of
alpha produce a single line that cuts the hexagon in half. Large' values of
alpha produce two lines very close together. Decrease alpha and the lines splay
out, joined at one end like a V. Continue to decrease alpha further and the
lines form a wider and wider V until, at a certain value, they each hit a
vertex of the hexagon. Then the curves change suddenly and dramatically. &quot;When
alpha reaches a critical value,&quot; explains Shipman, &quot;the projected
curves become straight line segments lying along opposing faces of the
hexagon.&quot;<o:p></o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;font-family:"Times New Roman"'><o:p>&nbsp;</o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;font-family:"Times New Roman"'>The smooth divergence of the splayed
lines and their abrupt transition to discontinuous segments are critical--they
link Shipman's curves to those parts of the recruitment dance that bees
emphasize with their waggling and buzzing. &quot;Biologists know that only
certain parts of the dance convey information,&quot; she says. &quot;In the
waggle dance, it's the diverging waggling runs and not the return loops. In the
circle dance it's short straight segments on the sides of the loops.&quot;
Shipman's mathematics captures both of these characteristics, and the parameter
alpha is the key. &quot;If different species have different sensitivities to
alpha, then they will change from the waggle dances to round dances when the
food source is at different distances.&quot;<o:p></o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;font-family:"Times New Roman"'><o:p>&nbsp;</o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;font-family:"Times New Roman"'>If Shipman is correct, her mathematical
description of the recruitment dance would push bee studies to a new level. The
discovery of mathematical structure is often the first and critical step in
turning what is merely a cacophony of observations into a coherent physical
explanation. In the sixteenth century Johannes Kepler joined astronomy's
pantheon of greats by demonstrating that planetary orbits follow the simple
geometric figure of the ellipse. By articulating the correct geometry traced by
the heavenly bodies, Kepler ended two millennia of astronomical speculation as
to the configuration of the heavens. Decades after Kepler died, Isaac Newton
explained why planets follow elliptical orbits by filling in the all-important
physics--gravity. With her flag manifold, Shipman is like a modern-day Kepler,
offering, in her words, &quot;everything in a single framework. I have found a
mathematics that takes all the different forms of the dance and embraces them
in a single coherent geometric structure.&quot;<o:p></o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;font-family:"Times New Roman"'><o:p>&nbsp;</o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;font-family:"Times New Roman"'>Shipman is not, however, content to play
Kepler. &quot;You can look at this idea and say, `That's a nice geometric
description of the dance, very pretty,' and leave it like that,&quot; she says.
&quot;But there is more to it. When you have a physical phenomenon like the
honeybee dance, and it follows a mathematical structure, you have to ask what
are the physical laws that are causing it to happen.&quot;<o:p></o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;font-family:"Times New Roman"'><o:p>&nbsp;</o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;font-family:"Times New Roman"'>At this point Shipman departs from safely
grounded scholarship and enters instead the airy realm of speculation. The flag
manifold, she notes, in addition to providing mathematicians with pure joy,
also happens to be useful to physicists in solving some of the mathematical
problems that arise in dealing with quarks, tiny particles that are the
building blocks of protons and neutrons. And she does not believe the
manifold's presence both in the mathematics of quarks and in the dance of
honeybees is a coincidence. Rather she suspects that the bees are somehow
sensitive to what's going on in the quantum world of quarks, that quantum
mechanics is as important to their perception of the world as sight, sound, and
smell.<o:p></o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;font-family:"Times New Roman"'><o:p>&nbsp;</o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;font-family:"Times New Roman"'>Say a bee flies around, finds a source of
food, and heads straight back to the hive to tell its colleagues. How does it
perceive where that food is? What notation can it use to remember? What teens
can it use to translate that memory into directions for its fellow bees? One
way, the way we big-brained humans would be most comfortable with, would be to
use landmarks--fly ten yards toward the big rock, turn left, duck under the
boughs of the pine tree, and see the flowers growing near the trunk. Another
way, one that seems to be more in line with what bees actually do, would be to
use physical characteristics that adequately identify the site, such as
variations in Earth's magnetic field or in the polarization of the sun's light.<o:p></o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;font-family:"Times New Roman"'><o:p>&nbsp;</o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;font-family:"Times New Roman"'>Researchers have in fact already
established that the dance is sensitive to such properties. Experiments have
documented, for example, that local variations in Earth's magnetic field alter
the angle of the waggling runs. In the past, scientists have attributed this to
the presence of magnetite, a magnetically active mineral, in the abdomen of
bees. Shipman, however, along with many other researchers, believes there is
more to it than little magnets in the bees' cells. But she tends not to have
much professional company when she reveals what she thinks is responsible for
the bees' response. &quot;Ultimately magnetism is described by quantum
fields,&quot; she says. &quot;I think the physics of the bees' bodies, their
physiology, must be constructed such that they're sensitive to quantum
fields--that is, the bee perceives these fields through quantum mechanical
interactions between the fields and the atoms in the membranes of certain
cells.&quot;<o:p></o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;font-family:"Times New Roman"'><o:p>&nbsp;</o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;font-family:"Times New Roman"'>What exactly does it mean to say that the
bees interact with quantum fields? A quantum field is a sort of framework
within which particles play out their existences. And, rather than assigning an
electron to one position in space at one particular time, you instead talk
about all the different places the electron could possibly be. You can loosely
refer to this collection of all possible locations as a &quot;field&quot; smeared
out across space and time. If you decide to check the electron's position by
observing it, the interaction between your measuring device and the field makes
the electron appear to be a single coherent object. In this sense, the observer
is said to disturb the quantum mechanical nature of the electron.<o:p></o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;font-family:"Times New Roman"'><o:p>&nbsp;</o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;font-family:"Times New Roman"'>There is some research to support the
view that bees are sensitive to effects that occur only on a quantum-mechanical
scale. One study exposed bees to short bursts of a high-intensity magnetic
field and concluded that the bees' response could be better explained as a
sensitivity to an effect known as nuclear magnetic resonance, or NMR, an
acronym commonly associated with a medical imaging technique. NMR occurs when
an electromagnetic wave impinges on the nuclei of atoms and flips their
orientation. NMR is considered a quantum mechanical effect because it takes
place only if each atom absorbs a particular size packet, or quantum, of
electro-magnetic energy.<o:p></o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;font-family:"Times New Roman"'><o:p>&nbsp;</o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;font-family:"Times New Roman"'>This research, however, doesn't address
the issue of how bees turn these quantum-mechanical perceptions into an
organized dance ritual. Shipman's mathematics does. To process quantum
mechanical information and communicate it to others, the bee would not only
have to possess equipment sensitive to the quantum-mechanical world; to come up
with the appropriate recruitment dance, it would have to perform some kind of
calculation similar to what Shipman did with her flag manifold. Assuming that
the typical honey-bee is not quite intelligent enough to make the calculations,
how does the bee come up with the flag manifold as an organizing principle for
its dance? Shipman doesn't claim to have the answer, but she is quick to point
out that the flag manifold is common both to the bee dance and to the geometry
of quarks. Perhaps, she speculates, bees possess some ability to perceive not
only light and magnetism but quarks as well.<o:p></o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;font-family:"Times New Roman"'><o:p>&nbsp;</o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;font-family:"Times New Roman"'>The notion that bees can perceive quarks
is hard enough for many physicists to swallow, but that's not even the half of
it. Physicists have theorized that quarks are constantly popping up in the
vacuum of empty space. This is possible because the vacuum is pervaded by
something called the zero-point energy field--a quantum field in which on
average no particles exist, but which can have local fluctuations that cause
quarks to blink in and out of existence. Shipman believes that bees might sense
these fleeting quarks, and use them--somehow--to create the complex and
peculiar structure of their dance.<o:p></o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;font-family:"Times New Roman"'><o:p>&nbsp;</o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;font-family:"Times New Roman"'>Now here's the rub. The flag manifold geometry
is an abstraction. It is useful in describing quarks not as the single coherent
objects that physicists can measure in the real world but as unobserved quantum
fields. Once a physicist tries to detect a quark--by bombarding it with another
particle in a high-energy accelerator--the flag manifold geometry is lost. If
bees are using quarks as a script for their dance, they must be able to observe
the quarks not as single coherent objects but as quantum fields. If Shipman's
hunch is correct and bees are able to &quot;touch&quot; the quantum world of
quarks without breaking it, not only would it shake up the field of biology,
but physicists would be forced to reinterpret quantum mechanics as well.<o:p></o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;font-family:"Times New Roman"'><o:p>&nbsp;</o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;font-family:"Times New Roman"'>Shipman is the first to admit that she is
a long way from proving her hypothesis. &quot;The mathematics implies that bees
are doing something with quarks,&quot; she says. &quot;I'm not saying they
definitely are. I'm just throwing it out as a possibility.&quot; And when she
publishes her research, probably sometime next year, no doubt many scientists
will be turned off by her dragging quarks and quantum mechanics into the
picture.<o:p></o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;font-family:"Times New Roman"'><o:p>&nbsp;</o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;font-family:"Times New Roman"'>&quot;The joining of mathematics and
biology is a fascinating endeavor and is just getting under way,&quot; says
William Faris, a mathematician at the <st1:place w:st="on"><st1:PlaceType
 w:st="on">University</st1:PlaceType> of <st1:PlaceName w:st="on">Arizona</st1:PlaceName></st1:place>.
&quot;Connecting quantum mechanics directly to biology is much more
speculative. I frankly am skeptical that the bee dance is related to quantum
mechanics. The mathematics she uses may be related to a completely different
explanation of the bee dance. This is the universality of mathematics. To
venture into quantum mechanics may be a distraction.&quot;<o:p></o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;font-family:"Times New Roman"'><o:p>&nbsp;</o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;font-family:"Times New Roman"'>Shipman isn't the first scientist to go
out on a limb trying to link biology to quantum mechanics. Physicist Roger
Penrose of <st1:place w:st="on"><st1:PlaceName w:st="on">Oxford</st1:PlaceName>
 <st1:PlaceType w:st="on">University</st1:PlaceType></st1:place> has postulated
that nerve cells have incredibly tiny tubes that serve as quantum mechanical
detectors, and other physicists have expressed similar ideas, but they are by
no means widely accepted.<o:p></o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;font-family:"Times New Roman"'><o:p>&nbsp;</o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;font-family:"Times New Roman"'>It is risky for a young scientist to take
on a radical theory. Championing an unproved or unpopular idea is a good way to
put your academic career on permanent hold. &quot;My thesis adviser was
worried, too,&quot; says Shipman. &quot;He was happy to know that I am
beginning collaborations with biologists.&quot;<o:p></o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;font-family:"Times New Roman"'><o:p>&nbsp;</o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;font-family:"Times New Roman"'>However, Shipman is too excited about the
ideas to care about the risk. &quot;To make discoveries that cross disciplines,
someone has to start. I know there is always resistance to new ideas,
especially if you are approaching the problem from a different perspective.
Sometimes theory comes before discovery and points the way toward the right
questions to ask. I hope this research stimulates other researchers'
imaginations.&quot;<o:p></o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;font-family:"Times New Roman"'><o:p>&nbsp;</o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;font-family:"Times New Roman"'><o:p>&nbsp;</o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;font-family:"Times New Roman"'>&nbsp;<o:p></o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;font-family:"Times New Roman"'><o:p>&nbsp;</o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;font-family:"Times New Roman"'><o:p>&nbsp;</o:p></span></font></p>

<p class=MsoNormal><font size=2 face=Arial><span style='font-size:10.0pt'><o:p>&nbsp;</o:p></span></font></p>

<p class=MsoNormal><font size=2 face=Arial><span style='font-size:10.0pt'><o:p>&nbsp;</o:p></span></font></p>

<p class=MsoNormal><font size=2 face=Arial><span style='font-size:10.0pt'><o:p>&nbsp;</o:p></span></font></p>

<p class=MsoNormal><font size=2 face=Arial><span style='font-size:10.0pt'><o:p>&nbsp;</o:p></span></font></p>

<p class=MsoNormal><font size=2 face=Arial><span style='font-size:10.0pt'><o:p>&nbsp;</o:p></span></font></p>

<p class=MsoNormal><font size=2 face=Arial><span style='font-size:10.0pt'><o:p>&nbsp;</o:p></span></font></p>

<p class=MsoNormal><font size=2 face=Arial><span style='font-size:10.0pt'><o:p>&nbsp;</o:p></span></font></p>

<p class=MsoNormal><font size=2 face=Arial><span style='font-size:10.0pt'><o:p>&nbsp;</o:p></span></font></p>

<p class=MsoNormal><font size=2 face=Arial><span style='font-size:10.0pt'><o:p>&nbsp;</o:p></span></font></p>

<p class=MsoNormal><font size=2 face=Arial><span style='font-size:10.0pt'><o:p>&nbsp;</o:p></span></font></p>

<p class=MsoNormal><font size=2 face=Arial><span style='font-size:10.0pt'><o:p>&nbsp;</o:p></span></font></p>

<p class=MsoNormal><font size=2 face=Arial><span style='font-size:10.0pt'><o:p>&nbsp;</o:p></span></font></p>

<p class=MsoNormal><font size=2 face=Arial><span style='font-size:10.0pt'><o:p>&nbsp;</o:p></span></font></p>

<p class=MsoNormal><font size=2 face=Arial><span style='font-size:10.0pt'><o:p>&nbsp;</o:p></span></font></p>

<p class=MsoNormal><font size=2 face=Arial><span style='font-size:10.0pt'><o:p>&nbsp;</o:p></span></font></p>

<p class=MsoNormal><font size=2 face=Arial><span style='font-size:10.0pt'><o:p>&nbsp;</o:p></span></font></p>

<p class=MsoNormal><font size=2 face=Arial><span style='font-size:10.0pt'><o:p>&nbsp;</o:p></span></font></p>

<p class=MsoNormal><font size=2 face=Arial><span style='font-size:10.0pt'><o:p>&nbsp;</o:p></span></font></p>

<p class=MsoNormal><font size=2 face=Arial><span style='font-size:10.0pt'><o:p>&nbsp;</o:p></span></font></p>

<p class=MsoNormal><font size=2 face=Arial><span style='font-size:10.0pt'><o:p>&nbsp;</o:p></span></font></p>

<p class=MsoAutoSig><font size=3 face=Arial><span style='font-size:12.0pt;
font-family:Arial'>Laurie Davies Adams<o:p></o:p></span></font></p>

<p class=MsoAutoSig><font size=3 face=Arial><span style='font-size:12.0pt;
font-family:Arial'>Executive Director<o:p></o:p></span></font></p>

<p class=MsoAutoSig><font size=3 face=Arial><span style='font-size:12.0pt;
font-family:Arial'>Pollinator Partnership<o:p></o:p></span></font></p>

<p class=MsoAutoSig><st1:Street w:st="on"><st1:address w:st="on"><font size=3
  face=Arial><span style='font-size:12.0pt;font-family:Arial'>423 Washington
  St.</span></font></st1:address></st1:Street><font face=Arial><span
style='font-family:Arial'>, 5th floor<o:p></o:p></span></font></p>

<p class=MsoAutoSig><st1:place w:st="on"><st1:City w:st="on"><font size=3
  face=Arial><span style='font-size:12.0pt;font-family:Arial'>San Francisco</span></font></st1:City><font
 face=Arial><span style='font-family:Arial'>, <st1:State w:st="on">CA</st1:State>
 <st1:PostalCode w:st="on">94111</st1:PostalCode></span></font></st1:place><font
face=Arial><span style='font-family:Arial'><o:p></o:p></span></font></p>

<p class=MsoAutoSig><font size=3 face=Arial><span style='font-size:12.0pt;
font-family:Arial'><o:p>&nbsp;</o:p></span></font></p>

<p class=MsoAutoSig><font size=3 face=Arial><span style='font-size:12.0pt;
font-family:Arial'>415.362.1137 PHONE<o:p></o:p></span></font></p>

<p class=MsoAutoSig><font size=3 face=Arial><span style='font-size:12.0pt;
font-family:Arial'>415.362.3070 FAX<o:p></o:p></span></font></p>

<p class=MsoAutoSig><font size=3 face=Arial><span style='font-size:12.0pt;
font-family:Arial'>lda@pollinator.org<o:p></o:p></span></font></p>

<p class=MsoAutoSig><b><font size=3 face=Arial><span style='font-size:12.0pt;
font-family:Arial;font-weight:bold'>www.pollinator.org<o:p></o:p></span></font></b></p>

<p class=MsoAutoSig><font size=3 face=Arial><span style='font-size:12.0pt;
font-family:Arial'><o:p>&nbsp;</o:p></span></font></p>

<p class=MsoAutoSig><i><font size=3 face=Arial><span style='font-size:12.0pt;
font-family:Arial;font-style:italic'>Our future flies on the wings of
pollinators.<o:p></o:p></span></font></i></p>

<p class=MsoAutoSig><b><font size=3 face=Arial><span style='font-size:12.0pt;
font-family:Arial;font-weight:bold'>National Pollinator Week&nbsp; - June 22-28 -
join the national campaign today at www.pollinator.org!<o:p></o:p></span></font></b></p>

<p class=MsoNormal><font size=3 face=Arial><span style='font-size:12.0pt'><o:p>&nbsp;</o:p></span></font></p>

</div>

</body>

</html>