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Evidence is accumulating that commonly used pesticides are linked to decline

of pollinator populations; adverse effects of three neonicotinoids on bees have

led to bans on their use across the European Union. Developing insecticides

that pose negligible risks to beneficial organisms such as honeybees is desir-

able and timely. One strategy is to use recombinant fusion proteins

containing neuroactive peptides/proteins linked to a ‘carrier’ protein that con-

fers oral toxicity. Hv1a/GNA (Galanthus nivalis agglutinin), containing an

insect-specific spider venom calcium channel blocker (v-hexatoxin-Hv1a)

linked to snowdrop lectin (GNA) as a ‘carrier’, is an effective oral biopesticide

towards various insect pests. Effects of Hv1a/GNA towards a non-target

species, Apis mellifera, were assessed through a thorough early-tier risk assess-

ment. Following feeding, honeybees internalized Hv1a/GNA, which reached

the brain within 1 h after exposure. However, survival was only slightly

affected by ingestion (LD50 . 100 mg bee21) or injection of fusion protein.

Bees fed acute (100 mg bee21) or chronic (0.35 mg ml21) doses of Hv1a/

GNA and trained in an olfactory learning task had similar rates of learning

and memory to no-pesticide controls. Larvae were unaffected, being able to

degrade Hv1a/GNA. These tests suggest that Hv1a/GNA is unlikely to

cause detrimental effects on honeybees, indicating that atracotoxins targeting

calcium channels are potential alternatives to conventional pesticides.

 on December 1, 2014//rspb.royalsocietypublishing.org/
1. Introduction
Pest control is an essential component of food security and agricultural pro-

ductivity, as herbivorous pests, weeds and pathogens can cause significant losses

in staple food crops unless control measures are in place [1]. Since the 1940s,

crop protection from insect pests has been reliant on synthetic chemical insecticides

such as DDT and organophosphates [2]; these chemicals improved yields, but with

a cost of negative consequences for non-target organisms, including humans [3]. To

overcome this, industrial producers have designed pesticides such as synthetic pyr-

ethroids, neonicotinoids and growth regulators with greater specificity for targeted

pests that are now used worldwide [4]. Neonicotinoids are general agonists of

insect nicotinic acetylcholine receptors, but bind only weakly to homologous recep-

tors in higher animals [5]. Their efficacy and low mammalian toxicity have led to

their widescale adoption, and they currently make up 24% of the world insecticide

market [6]. However, several reports of adverse effects of neonicotinoids on ben-

eficial pollinating insects [7,8] have recently resulted in a controversial ban of the

use of three neonicotinoid pesticides (clothianidin, thiamenthoxam and imidaclo-

prid) by the European Commission. Insect pollination is an important ecosystem
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service, but it is also essential for fruit set in many crop species,

contributing to 35% of global food production in approximately

70% of crops [9]. Sublethal exposure to nectar-relevant doses of

neonicotinoids impairs the function of Kenyon cells in the hon-

eybee’s mushroom bodies [10] and reduces olfactory learning

and memory [7,11] and homing ability [12]. In bumblebees,

field-relevant, sublethal doses of these pesticides reduce fora-

ging success and cause failure of bee colonies [13]. While

neonicotinoids and other chemical pesticides clearly have nega-

tive impacts on pollinating bee species [13,14], banning them

without more appropriate alternatives could have significant

consequences for food production or biodiversity, if less specific

pesticides are used to replace them.

Potential alternatives to neonicotinoids and other chemical

pesticides include the development and use of biopesticides:

biological agents or bioactive compounds that often have

high specificity for target pest species [15]. Examples of cur-

rently used biopesticides include entomopathogenic fungi

[16], and toxins derived from the entomopathogenic bacterium

Bacillus thuringiensis [17]. Biopesticide candidates such as the

venom of predatory arthropods that target the voltage-gated

calcium ion channels (CaV) are very potent and selective

[18]. Since CaV channels are not highly conserved in insects,

this makes them attractive alternatives and represents a novel

mode of action to conventional pesticides.

Fusion protein technology, in which insecticidal peptides are

linked to a plant lectin ‘carrier’ protein, has been developed

to allow proteins such as spider venom toxins to act as

orally delivered biopesticides. For example, v-hexatoxin-Hv1a

(Hv1a; also referred to elsewhere as v-atracotoxin-Hv1a or

v-ACTX-Hv1a) from the Australian funnel web spider Hadro-
nyche versuta acts on CaV channels in the insect central

nervous system (CNS), causing paralysis [19]. This toxin is

lethal to many insect species when injected, but does not affect

mammals [20]. When delivered orally it is essentially non-toxic

to insects, as it is unable to reach its site of action in the CNS.

Fusion of this insecticidal molecule to the carrier protein snow-

drop lectin (Galanthus nivalis agglutinin, GNA), allows Hv1a to

traverse the insect gut epithelium and access its sites of action,

producing an orally active insecticidal protein [21]. The Hv1a/

GNA fusion protein has oral insecticidal activity against insects

from a range of orders, including Lepidoptera, Coleoptera,

Diptera and Hemiptera.

Fusion protein biopesticides have the potential to improve

pest management strategies, but they have not yet been

tested on important insect pollinators such as bee species. In

Europe, laboratory-risk assessments of pesticides on bees cur-

rently include determination of acute contact and oral toxicity

on adult honeybees, following the guidelines from the Euro-

pean and Mediterranean Plant Protection Organization 170

[22] and Organisation for Economic Co-operation and Develop-

ment (OECD) 213 and 214 [23,24]. Despite conforming to these

criteria for assessing pesticide toxicity to bees, pesticides can

also exert a range of effects on pollinator behaviour at sublethal

and field-realistic concentrations that are not detectable by cur-

rent guidelines [25,26]. For example, subtle aspects of bee

behaviour important for foraging and survival, such as learning

and memory, can be impaired after prolonged exposure to pes-

ticides [7,8]. It is therefore sensible to assume that more rigorous

testing of pesticide toxicity to pollinating insects should be

implemented alongside the development of new biopesticide

products, to identify risks prior to their implementation in the

field and to reduce environmental impact.
Here, we report the testing of the insecticidal fusion

protein Hv1a/GNA for toxicity to honeybees including the

recommended acute toxicity tests from the OECD guidelines

and in a test of cognitive function under both acute and long-

term exposure. We also address the issues involved in testing

pesticides on pollinators, suggesting that additional toxicity

tests, such as a chronic toxicity assay, and an evaluation of

any potential effects which pesticides may have on honeybee

behaviour should be adopted to assess critical factors for

bee viability and their role as pollinators.
2. Material and methods
(a) Honeybees
Honeybee colonies (Apis mellifera mellifera) were originally

obtained from the National Bee Unit, York, UK, and were then

maintained at Newcastle University. During the summer months

(April–October 2012), bees were kept outdoors and allowed to

fly and forage freely. During the winter months (November

2012–March 2013), bees were maintained indoors, but were still

allowed to fly freely via a plastic pipe connecting the hive entrance

to the outdoors.

(b) Pesticides and toxins
Recombinant GNA, and the fusion protein Hv1a/GNA were

produced in the yeast expression system Pichia pastoris as

previously described [21,27]. The pesticide thiamethoxam

(TMX) (Sigma Aldrich, 99% purity) and the CaV channel blocker

benidipine HCl (Tocris Bioscience) were dissolved directly in 1 M

sucrose solution for oral administration to adult forager bees.

Acetamiprid (Ace) (Scotts) was obtained as a liquid formulation

(0.5% Ace, 1–5% ethanol, less than 1% of aqueous dipropylene

glycol solution of approx. 20% 1,2-benzisothiazolin-3-one,

5–10% glycerol).

(c) Toxicity studies
(i) Acute toxicity tests of Hv1a/GNA
Acute toxicity was assessed by injection, and by oral and contact

bioassays, using adult forager honeybees. Bees were collected

from outside the hive in small plastic vials and then cold anaes-

thetized to allow manipulation or transference to containers.

After all acute toxin administration regimes (see below), bees

were kept in 650 ml plastic storage containers fitted with 2 ml

microcentrifuge tubes that had four holes drilled in for bee

access. Bees were kept at 258C in the dark and allowed to feed

ad libitum on 50% w/v sucrose solution. Mortality was recorded

at 4, 24 and 48 h after exposure to the test compound.

Acute oral and contact toxicity assays were performed accord-

ing to the OECD guidelines [23,24]. For contact toxicity assays,

bees were cold anaesthetized and individually treated by topical

application of phosphate-buffered saline—Tween (PBST; 137 mM

NaCl, 2.7 mM KCl, 10 mM Na2HPO4.2H2O, 3 mM KH2PO4, pH

7.4, containing 0.05% Tween-20; negative control), GNA in PBST

(20 mg bee21), Hv1a/GNA in PBST (20 mg bee21) or Ace as the

positive control (4, 8.09 or 16.18 mg bee21, in PBST), directly

applied to the thorax using a micropipette. After application,

insects were separated into storage boxes as described above.

Ten bees were used per treatment, and each treatment replicated

seven times.

For the acute oral toxicity assays, insects were starved for

2 h prior to testing, in order to encourage active feeding during

the assay. Bees were collected, cold anaesthetized and placed

inside the storage containers, in replicates of 10 individuals

per container. After starvation bees were fed via a feeder with

http://rspb.royalsocietypublishing.org/
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either 200 ml of sucrose (50% w/v) solution (negative control), or

sucrose solution containing GNA (control; 100 mg bee21), Hv1a/

GNA (100 mg bee21), or Ace (positive control; 7.26, 14.52 or

29 mg bee21). Insects were allowed to feed, without restraint,

on the treatments for up to 4 h, after which these feeders were

removed and replaced with sucrose solution (50% w/v) feeders

to allow feeding ad libitum. Six replicates of 10 bees were used

for the negative control, GNA and Hv1a/GNA treatments,

whereas four replicates of 10 bees were used for each

concentration of the positive control.

Effects of the recombinant proteins were also evaluated by an

injection bioassay. Adult honeybees (30 per treatment) were cold

anaesthetized and injected into the thorax with either (i) 5 ml of

phosphate-buffered saline (PBS; as described above); (ii) 5 ml of a

4 mg ml21 GNA solution in PBS buffer (20 mg of GNA bee21)

or (ii) 5 ml of a 4 mg ml21 Hv1a/GNA solution in PBS buffer

(20 mg of Hv1a/GNA bee21) using a Hamilton syringe (Model

25F, needle gauge 25). After injection, bees were divided into

groups of 10 inside the storage containers.
20140619
(ii) Chronic toxicity tests of Hv1a/GNA
Bees were collected, anaesthetized, then transferred to storage

containers with feeding tubes as described above. Bees were

allowed to feed ad libitum for 7 days on one of three treatment

solutions: (i) 1 M sucrose, (ii) 350 mg ml21 Hv1a/GNA in 1 M

sucrose, or (iii) 10 ng ml21 TMX in 1 M sucrose. Bees were main-

tained in an incubator at 348C for the duration of the treatment

period, and mortality was recorded daily. Sample size was 40

bees per treatment group.
(iii) Testing of Hv1a/GNA for acute toxicity towards
honeybee larvae

Standard operating procedures established for the in vitro testing

of pesticides were used to test for acute toxicity of Hv1a/GNA

towards honeybee larvae [28]. A single oral dose of 100 mg larva21

of Hv1a/GNA was administered to 4 day-old larvae individually

maintained in microtitre plate wells. Plates were incubated under

controlled environmental conditions at 348C in the dark, 60% relative

humidity. A total of 30 larvae were treated alongside a control treat-

ment, in which larvae were fed on a diet with no added protein.

Fifteen larvae were sacrificed at 24 and 92 h after exposure to the

fusion protein to obtain haemolymph, whole larval and diet samples

for western blot analysis to assess the stability of the fusion protein.

Haemolymph (at least 5 ml per insect) was obtained by piercing

pre-chilled larvae with a fine needle and collecting into pre-chilled

phenylthiocarbamide-phenol oxidase inhibitor to prevent melaniza-

tion. The survival of the remaining 15 larvae was monitored for

4 days subsequent to the single acute Hv1a/GNA dose.
(d) Behavioural studies
(i) Acute Hv1a/GNA exposure for learning and memory

experiments
Forager bees were collected from outside the hive in small plastic

vials, cold anaesthetized and restrained in harnesses [29]. The

bees were fed 20 ml of 1 M sucrose solution, then left overnight

to become sufficiently hungry and motivated to perform the

olfactory learning task. One hour prior to the learning task,

each bee was fed 5 ml of treatment solution. The treatment

groups were: (i) a control group fed 5 ml of 1 M sucrose;

(ii) 100 mg of Hv1a/GNA in 5 ml of 1 M sucrose; (iii) 100 mg of

GNA in 5 ml of 1 M sucrose; and (iv) 500 ng of benidipine HCl

in 5 ml of 1 M sucrose. The experiment was repeated with three

cohorts, and the total sample size of trained bees was greater

than or equal to 20 bees per treatment group.
(ii) Long-term Hv1a/GNA exposure for learning and
memory experiments

Foraging worker bees were collected and cold anaesthetized.

Ten bees were transferred to each feeding box (16.5 � 11 �
6.5 cm) fitted with 2 ml microcentrifuge tubes with evenly

spaced holes for feeding the solutions. Bees were allowed to

feed ad libitum for 7 days on one of three treatment solutions:

(i) 1 M sucrose, (ii) 350 mg ml21 Hv1a/GNA in 1 M sucrose, or

(iii) 10 ng ml21 TMX (i.e. 10 ppb or 34 nM) in 1 M sucrose.

Bees were maintained in an incubator at 348C for the duration

of the treatment period, and mortality was recorded daily.

After this, the bees were cold anaesthetized and restrained in har-

nesses, fed 20 ml of treatment solution and left overnight to

become sufficiently motivated to perform the olfactory learning

task. The survival analysis was repeated four times (n ¼ 40 per

treatment group). A subset of bees was selected from these

cohorts for the olfactory conditioning assay.

(iii) Learning and memory experiments
An olfactory conditioning protocol based on the proboscis exten-

sion reflex (PER) was performed [29]. The conditioned stimulus

(CS; 1-hexanol) and unconditioned stimulus (0.2 ml of 1 M sucrose

solution) were presented for six training trials, with a 10 min

inter-trial interval. PER response to the CS was recorded. Two

unreinforced recall tests (the CS and a novel odour) were adminis-

tered at 10 min after conditioning and again at 24 h. The order of

presentation of these two test stimuli was pseudorandomized

across subjects.

(e) Detection of Hv1a/GNA in honeybee tissues
by western blotting

To test internalization of recombinant proteins, tissue samples were

collected from bees following 24 h feeding on either GNA or Hv1a/

GNA, as described above, using a modified version of the method

described by Mayack & Naug [30]. For haemolymph from adults,

insects were killed at 2208C and immediately wrapped with Paraf-

ilm. The distal end of one of the antennae was cut and insects were

placed individually in microcentrifuge tubes. Tubes were spun for

30 s at 5000g and haemolymph collected and kept at 2808C until

use. Haemolymph was collected from larvae previously exposed

to the recombinant proteins after either 24 h (5 days-old larvae) or

92 h (8 days-old larvae), as detailed above. For brain samples from

adults, insects were cold anaesthetized, restrained in harnesses

and fed with 20 ml of 1 M sucrose solution (negative control) or

100 mg Hv1a/GNA in 20 ml of 1 M sucrose solution. After 24 h, hon-

eybees were freeze-killed and the brains removed. Six brains from

each treatment were pooled and macerated in sodium dodecyl sul-

fate (SDS) sample buffer (100 mM Tris–HCl, pH 6.8, 4% SDS, 9%

glycerol, 2% 2-mercaptoethanol, 0.001% bromophenol blue).

Proteins from individual samples were separated in 15% SDS-

polyacrylamide gel electrophoresis (SDS-PAGE), transferred to

nitrocellulose membranes and screened for the presence of GNA

or Hv1a/GNA by SDS-PAGE followed by western blotting using

anti-GNA antibodies [21].

( f ) Statistical analysis
Log-rank Kaplan–Meier (K–M) survival analyses with pairwise

comparisons over strata were carried out using SPSS v. 19.0.

The median lethal dose (LD50) with 95% confidence intervals

(CIs) for positive controls on acute oral and contact bioassays

were estimated by plotting log dose versus probit of corrected

mortalities [31–33]. PER response during the learning and

memory tests was scored as a binary response, and data were

analysed in SPSS using a binary logistic regression (lreg). Data

from the first training trial were excluded from the analysis to

http://rspb.royalsocietypublishing.org/
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facilitate model fit. Pairwise comparisons between different

treatments, time points and odours were performed using

least-squares post hoc comparisons (lsc). PER data represent the

mean probability of responding with a Wald x2 95% CI.
3. Results
(a) Testing the acute and chronic toxicity of Hv1a/GNA

to honeybees
In order to assess the potential toxicity of Hv1a/GNA to pol-

linators, bioassays were carried out to measure the survival of

honeybees after exposure to the fusion protein (figure 1). The

Hv1a/GNA treatment regimens included acute contact and

oral exposure, acute injection, and a chronic 7-days oral

exposure; the neonicotinoids Ace and TMX, were used to

compare mortality caused by a neonicotinoid to that of the

fusion protein.

In the acute contact toxicity assays, the positive control

Ace induced bee mortality when compared to the negative

control (PBST), GNA control or Hv1a/GNA treatments

(figure 1a; K–M, PBST versus Ace, x2
1 ¼ 57:1, p , 0.001;

Hv1a/GNA versus Ace, x2
1 ¼ 49:9, p , 0.001; GNA versus

Ace, x2
1 ¼ 49:9, p , 0.001), with an estimated LD50 of

6.78+ 0.58 mg bee21, thus within the limits reported in the

literature [34]. When compared to the negative control,

neither Hv1a/GNA nor GNA increased mortality after
contact exposure (K–M, Hv1a/GNA, x2
1 ¼ 1:34, p ¼ 0.246;

GNA, x2
1 ¼ 1:34, p ¼ 0.246) when applied at 20 mg bee21. It is

unlikely that the fusion protein or the GNA are able to cross

the insect cuticle, and thus a lack of toxicity in this assay

is expected.

In the acute oral treatments with the compounds, bees fed

the neonicotinoid, Ace, were the least likely to survive of all

treatments (figure 1b; K–M, sucrose versus Ace, x2
1 ¼ 56:3,

p , 0.001). The estimated LD50 for this compound was

8.95+ 0.23 mg bee21, which is comparable to those reported

for formulated products [35]. Survival of honeybees fed on

Hv1a/GNA or GNA at the maximum recommended dose

for oral toxicity assays (100 mg bee21) was reduced by 22%

for the fusion protein (K–M, sucrose versus Hv1a/GNA,

x2
1 ¼ 7:76, p ¼ 0.005) and 34% for the GNA (K–M, sucrose

versus GNA, x2
1 ¼ 16:7, p , 0.001). Survival of the bees fed

either Hv1a/GNA or GNA was greater than those fed aceta-

miprid (K–M, Hv1a/GNA versus Ace, x2
1 ¼ 35:5, p , 0.001;

GNA versus Ace, x2
1 ¼ 31:5, p , 0.001). We can therefore

conclude that Hv1a/GNA and GNA are of relatively low tox-

icity to honeybees as the oral LD50 . 100 mg/bee. An acute

toxicity assay was also performed on larval honeybees: no

mortality was observed for either control or Hv1a/GNA

treatments, with 100% survival recorded 4 days post-treatment.

In order to exclude the possibility that low toxicity of Hv1a/

GNAwas owing to inefficient transport of the Hv1a/GNA from

the gut to the haemolymph, toxicity of Hv1a/GNA and GNA

by injection was assessed to represent a ‘worst case scenario’.

http://rspb.royalsocietypublishing.org/
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In this test, injections were of 20 mg protein bee21. The mortality

over 48 h was greatest for those injected with GNA (57% mor-

tality; figure 1c; K–M, PBS versus GNA, x2
1 ¼ 23:4, p , 0.001;

GNA versus Hv1a/GNA, x2
1 ¼ 11:1, p¼ 0.001). While bees

injected with Hv1a/GNA also had significantly greater mor-

tality than the PBS control (K–M, PBS versus Hv1a/GNA,

x2
1 ¼ 5:35, p ¼ 0.021), mortality levels were relatively low

(,17%). These low levels were similar to the acute oral treat-

ment, confirming that only a very high dose of this compound

could produce measurable mortality in honeybees. Most of

this mortality occurred between the 24 and 48 h time points.

Previously, the Hv1a/GNA fusion protein has been

shown to be an effective insecticide when used as a foliar

spray; the protein is stable over timescales more than two

weeks under these conditions and provides continuing pro-

tection without the need for re-spraying (E. C. Fitches 2013,

unpublished data). The toxicity of chronic consumption of

Hv1a/GNA at the effective concentration when delivered

as a spray, 350 ppm (0.35 mg ml21), by adult forager honey-

bees was also investigated, and compared directly to the

chronic toxic effects of the neonicotinoid, TMX, at the concen-

trations reported in the nectar and pollen of treated crops

[36,37]. Each bee consumed on average 63.8+0.003 ml of

the control solution, 62.1+0.002 ml of the Hv1a/GNA sol-

ution and 72.7+0.004 ml of the TMX solution per day.

Based on the average volume of solution consumed per

day, the estimated dose of the Hv1a/GNA solution for each
bee was 21.7 mg bee21 day21, and the estimated dose of the

thiamethoxam for each bee was 0.727 ng bee21 day21. After

7 days of treatment, TMX treatment significantly increased

mortality compared to the other groups (figure 1d; K–M,

sucrose versus TMX, x2
1 ¼ 37:3, p , 0.001). In contrast to

this, there was no difference in survival between the control

group and the Hv1a/GNA treatment group (K–M, sucrose

versus Hv1a/GNA, x2
1 ¼ 1:16, p ¼ 0.282), again confirming

low toxicity of Hv1a/GNA to honeybees.

(b) Testing the effects of Hv1a/GNA on honeybee
learning and memory

Experiments based on an olfactory conditioning protocol

were performed to assess whether Hv1a/GNA affected olfac-

tory learning and memory in the honeybee following both

acute and long-term oral exposure (figure 2). Studies to

investigate potential effects of acute exposure also included

a positive control for testing the effects of a CaV channel

blocker on this behavioural parameter (benidipine hydrochlo-

ride; Ben), since a CaV channel is the target of the Hv1a toxin.

As shown in figure 2a, there was an overall difference in the

rate of learning between the different acute treatment groups

(lreg, x2
3 ¼ 30:7, p , 0.001). Ben (positive control) impaired

the rate of olfactory learning by up to 50% over the course

of six conditioning trials (lsc, p ¼ 0.026). The rate of learning

was unaffected when bees were treated with an acute dose of
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either Hv1a/GNA (lsc, p ¼ 0.957) or GNA (lsc, p ¼ 0.702)

(figure 2a). Treatment influenced the expression of short-

term memory (STM, figure 2b); bees fed Ben had lower

responses than the control, GNA- or the Hv1a/GNA-treated

bees (lreg, STM, x2
3 ¼ 7:82, p ¼ 0.050; lsc for the control versus

Ben, p ¼ 0.025). However, when tested for long-term memory

(LTM) 24 h later, there was no significant difference in the

rate of response to the conditioned odour between the treat-

ment groups (lreg, LTM, x2
3 ¼ 4:67, p ¼ 0.197). For both

tests, the rate of response was always greater towards the con-

ditioned odour than a novel odour (data not shown, lreg,

STM, x2
1 ¼ 17:7, p , 0.001; LTM, x2

1 ¼ 10:3, p ¼ 0.001).

The effects of chronic oral exposure to Hv1a/GNA on

olfactory learning ability and memory were also tested. The

results showed that Hv1a/GNA did not influence the rate or

asymptotic level of learning when compared to the control

(lreg, x2
1 ¼ 2:69, p ¼ 0.107; figure 2c). Similarly, bees fed

Hv1a/GNA did not exhibit impaired STM or LTM per-

formance (lreg, STM, x2
1 ¼ 3:30, p ¼ 0.069; LTM, x2

1 ¼ 1:41,

p ¼ 0.235; figure 2d ). These results demonstrate that the

fusion protein HV1a/GNA does not impair olfactory learning

or memory formation, even though a positive control for the

same target as the fusion protein (Ben) significantly reduced

the rate of learning and STM.

(c) Detection of Hv1a/GNA in honeybee tissues
by western blotting

To investigate potential internalization of HV1a/GNA in

both adult and larval honeybees, tissue samples were col-

lected from insects fed on diet containing either GNA or

Hv1a/GNA 24 h after exposure and subsequently transferred

to diet without treatment for varying times. In adult bees, the

Hv1a/GNA fusion protein was clearly visualized in haemo-

lymph samples 24 h after feeding (figure 3a), demonstrating

that the GNA carrier component was able to direct transport

of the toxin component across the gut epithelium, as has been

observed in other insects [21]. Fusion protein was also detect-

able in brain tissue, showing that the toxin had been able to

reach its site of action in the CNS, and that the lack of toxicity

of Hv1a/GNA was not owing to failure to transport or access

its target. As in adult bees, the western blotting experiment

for bee larvae showed evidence for transport of the GNA

carrier across the gut epithelium, since GNA was present

both in haemolymph and whole insect after feeding and

chase (24 and 92 h). However, no evidence for toxin transport

was seen, as all the fusion protein was degraded and no

intact Hv1a/GNA could be detected (figure 3b). As expected,

the levels of degraded protein, representing the GNA part of

the fusion protein, were reduced by the longer chase period

of 92 h compared with 24 h. The absence of toxicity of

Hv1a/GNA to larval bees is thus primarily owing to protein

degradation in the gut preventing transport of the toxin to its

sites of action, although on the basis of results from adult

bees, it is likely that the toxin would not affect calcium

channels if transported to the haemolymph.
4. Discussion
The fusion protein Hv1a/GNA complies with the current

European and American risk assessments for pesticide toxicity

to honeybees, as tests described in the OECD guidelines were
fulfilled [23,24]. Following those assays, acute oral and contact

toxicity of Hv1a/GNA can be considered negligible (LD50 .

100 mg bee21). Even when bees were injected with Hv1a/

GNA, only 17% of the bees died within 48 h. In comparison,

lepidopteran larvae injected with comparable amounts of

fusion protein typically show a 90–100% reduction in survival

[21]. We assume this level of mortality in bees can be

considered low, as, according to the United States Environ-

mental Protection Agency, compounds with contact toxicity

of LD50 . 11 mg bee21 are classified as ‘relatively non-toxic’

[38]. This suggests that the omega toxin does not reach or

bind to the target site of action in the CNS of bees as avidly

as it does in lepidopteran larvae, or that there are critical differ-

ences in the ion channel binding sites in bees and lepidopteran

larvae. Surprisingly, the survival of bees injected with GNA

was significantly reduced (ca 60%), when compared with the

control treatment, whereas the injection of equivalent, high

doses of GNA into lepidopteran larvae does not result in sub-

stantial mortality. In our experiments, GNA was only used as a

control, in the event that the fusion protein had an influence on

survival, learning and memory. Previous results of feeding

bioassays have suggested that plant lectins have differing

effects on insects, although the basis of this effect remains

unclear. Hv1a/GNA did not have a measurable influence on

survival or cognition in adult worker honeybees after acute

or long-term oral exposure. The observed lack of Hv1a/GNA

toxicity contrasts with lethal effects of neonicotinoids used as

positive controls: Ace was acutely toxic at similar concen-

trations to those previously reported [34], and chronic TMX

ingestion at a field-relevant dose had significant lethal effects

at the concentrations found in nectar and pollen [36,37].

No adverse effects of Hv1a/GNA on honeybee learning

and memory were detected in the assays reported here, in

spite of the fact that the doses we gave the bees prior to the

assay were relatively high. In fact, the chronic exposure

experiment is likely to have provided a dose to the bees far

above what they would experience in the field; this is because

the biopesticide is applied as a spray and not as a systemic

pesticide and so would not be consumed in large amounts

by bees in nectar and pollen. Previous studies have found

that exposure to field-relevant doses of pesticides which

target the CNS, such as neonicotinoids and organopho-

sphates, impair the ability of honeybees to learn and

remember the association between an olfactory cue and a

sucrose reward [7,8]. The effect of Hv1a on insect calcium

channels [20] suggests that it could have significant effects

on learning and memory, especially if CaV channels are

affected [39]. CaV channels are known to play a role in olfac-

tory learning in mammals [40] and are present in the areas of

the honeybee brain, where olfactory associations are pro-

cessed [41,42]. This prediction of CaV involvement in

honeybee learning was confirmed, as the positive control

for CaV block, benidipine HCl [43], impaired olfactory learn-

ing and STM. What was surprising, however, was that

benidipine HCl (used as a positive control) did not influence

long-term olfactory memory. A previous study of the influ-

ence of calcium on olfactory learning and memory in bees

showed that blocking intracellular calcium release prior to

conditioning impaired LTM formation [39]. Instead of block-

ing CaV channels as we did, however, this study used a

chelator of calcium to prevent calcium binding to CaV chan-

nels. By contrast, Hv1a/GNA had no significant effect on

olfactory learning or memory, indicating that at the doses
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Figure 3. Immuno-assay by western blotting demonstrates internalization of Hv1a/GNA in adult honeybee tissues. Bands of GNA (12 kDa) and Hv1a/GNA (FP;
16 kDa) are indicated. (a) Diagram of adult honeybee showing the presence of GNA and fusion protein Hv1a/GNA (FP) in both the haemolymph and brain
after feeding solutions containing proteins. Insects were fed 100 mg GNA or Hv1a/GNA, and haemolymph or brain tissue was collected after 24 h for analysis.
(b) Diagram of larval honeybee showing that Hv1a/GNA (FP) is degraded after ingestion; larvae were dosed with 100 mg Hv1a/GNA per larva and haemolymph
was collected after 24 h for analysis.
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we tested, it is an ineffective antagonist of the CaV channel in

the honeybee brain.

This lackof observed adverse effects on either the survival or

the learning ability of adult honeybees was not owing to the
fusion protein failing to reach the target site in the CNS. When

orally administered to adult worker honeybees, Hv1a/GNA

was capable of crossing the epithelial gut wall, as Hva1/GNA

immunoreactivity was detected in the haemolymph and brain
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tissue 1 h after ingestion. In contrast with adult honeybees,

larvae were capable of cleaving the fusion protein within the

digestive tract, preventing Hv1a/GNA from reaching the site

of action. A decline in gut proteolytic activity is known to

occur as bees develop into foragers [44,45], reflecting the high

protein content of the diet consumed by larval bees, in contrast

to the low-protein nectar diet consumed by adults.

It would appear that despite reaching the CNS of adult bees,

Hv1a/GNA does not block the CaV channels of Apis mellifera.

Conversely, another peptide isolated from H. versuta venom,

v-ACTX-Hv2a, has been shown to block CaV channels in

honeybee brain neurons [46]. Although this protein has a simi-

lar disulfide connection pattern to Hv1a, it has only limited

sequence similarity, which could account for differences in

toxicity towards bees. Hv1a has insecticidal activity against

Lepidoptera such as Helicoverpa armigera [47] and has been

shown to block CaV currents in CNS neurons from Drosophila
melanogaster, and the cockroach Periplaneta americana [19,20].

However, compared with other insecticide targets in the CNS

such as acetylcholine receptors and NaV channels, CaV chan-

nels are less well conserved between different insect orders

[48], thus conferring a certain degree of specificity. Functional

expression of recombinant CaV channels from different insect

orders would be necessary to fully elucidate the basis of this

differential sensitivity to Hv1a.

The data we report here suggest that Hv1a/GNA is a

potentially specific biopesticide, as it shows no adverse effects
on the honeybee, Apis mellifera, an economically important pol-

linator, while being toxic to agronomically important insect

pests. Another possible reason for this lack of toxicity towards

honeybee is owing to its degradation within the bee, prevent-

ing accumulation of the fusion protein even if exposure is

repeated. The experiments we have performed exceed current

European and American requirements for pesticide safety, and

include an olfactory learning assay, which found no adverse

effects of Hv1a/GNA on this behavioural parameter. These

results show that Hv1a/GNA can be considered safer for

honeybees than some currently used pesticides, such as

neonicotinoids, although additional safety tests should be

performed to confirm its safety against other beneficial hyme-

noptera, such as bumblebees and parasitoid wasps. This study

also highlights the need to extend current guidelines for the

safety testing of new pesticides to include behavioural studies,

particularly for pollinating insects.
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